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Novel Compounds and Drugs and Recent Patents in Treating Multidrug-
Resistant and Extensively Drug-Resistant Tuberculosis
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Abstract: A number of recent studies revealed that successful treatment of the patients with MDR/XDR- TB was not
achieved due to high resistant rates to many second-line drugs such as kanamycin and prothionamide including poor ad-
herence of the lengthy treatment. Many new drugs and compounds such as benzothiazinones, meropenem, PA-824,
isoflavonoids, rhein, PNU-100480, TMC207, SQ109, OPC-67683, AZD5847, and linezolid are currently in
development pipeline. According to very few patents in new compounds and drugs against MDR/XDR-
Mycobacterium tuberculosis bacilli have been currently introduced, so inventors must be encouraged to con-

tribute to this area worldwide.
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INTRODUCTION

Multidrug-resistant tuberculosis (MDR-TB) is defined as
TB demonstrating resistance to at least isoniazid and rifam-
picin. It has become a major health threat in some parts of
the world, Isoniazid and rifampicin are the two principal
drugs of anti-TB chemotherapy. The World Health Organi-
zation (WHO) glebally estimates that 50 million people are
infected with MDR-TB [1]. In 1943 para-aminosalicylic acid
(PAS) and streptomyein were the first two drugs introduced
and they initiated the development of anti-TB treatment
regimens {2]. Since then PAS and isoniazid were combined
with streptomycin because streptomycin monotherapy fre-
quently resulted in treatment failure [3]. Unfortunately, TB
patient care was shifted to outpatient setting in the late 1960s
because spreading of TB was not thought to be a public haz-
ard which contributed to peor patient compliance, relapse,
treatment failure and secondary or acquired drug resistance
(3] In the situations of an insufficient number of active an-
timicrobials in a treatment regimen, suboptimal dosage,
omission of on¢ or more of the prescribed antimicrobials,
poor drug intestinal absorption and interrupted drug inges-
tion [4] and monotherapy [5] may contribute to MDR-TB. Tt
is clear that MDR-TB treatment nceds to be standardized
where possible once it has developed into a worldwide epi-
demiclogical crisis [6]. No controlled trials or formal cbser-
vational studies have been conducted rigorously to compare
the various treatment drugs and regimens because of the sub-
stantial differences among many cases and should group
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them into homogeneous groups in addition to a great deal of
MDR- TB expert apinion. These serious preblems lead to the
debating arcund the number of drugs used for MDR-TB in
recent years [7-10]. Caminero concluded the main goals in
developing recommendations that; 1) the use of threc effec-
tive second-line drugs could be sufficient (natural resistant
mutants per drug > 1X 10°) from a bactericlogical point of
view; 2) in the field, some drugs often have compromised
efficacy or very weak action; 3) for this reason, under Na-
tional Tuberculosis Program (NTP) conditions, a second-line
drugs regimen should include at least four drugs [11] and 4)
cccasionally, when several drugs exhibit compromised effi-
cacy or very weak action, it may be justified to prescribe
more than four drugs [12]. The WHO recommended strep-
tomycin, kanamycin and capreomycin as the injectable sce-
ond-line drugs and ofloxacin, levofloxacin, moxifloxacin,
ethionamide, cycloserine and PAS as the oral second-line
drugs for the treatment of at least six menths and until spu-
tum smears and cultures are continuously negative with at
least five drugs and inclusion of an injectable drug in the
initial phase of treatment and 12-18 months of four oral
drugs in the continuation phase [6]. Some experts classified
amikacin as an injectable drug and clarithromycin, rifabutin,
moxifloxacin, gatifioxacin, ciprofloxacin, thiacetazone, clo-
fazimine, and co-amoxiclav as the additional oral second-
line drugs. In MDR-TB patients with human immunodefi-
ciency virus (HIV)- infectien/acquired immunodeficiency
syndrome (AIDS), the WHO recommended co-trimoxa-
zoleprophylaxis on the first day of MDR-TB treatment and
started azidothymidine+lamivudine+efavirenz as the pre-
ferred antiretroviral therapy regimen as socn as MDR-TB
treatment was tolerated [6]. Genetic sites for anti-TB com-
pound resistance are cornerstones for the development of
new compounds against drug-resistant TB bacilli where
some drugs share common genetic sites (Table 1). Some
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Table 1. Known genetic sites for anti-TB drug resistance,

Drug Target Gene Reference
Catalase-peroxidase katG 13
N-acctyltransferase 2 nat 14
soniazid Alkylhydroperoxidase ahpCloxyR 15,16, 17
Nicotinamide Adenine Dinuclectide Hydra- 18
te dehydrogenase ndh
Mycolic acid synthesis 13, 1%
[soniazid-ethionamide EnoylAcyl Carrier Protein reductasc inkhA
Rifamycins 13,19,
{Rifampicin, Rifabutin, Rifapen- 8 subunit RNA pclymerase rpof 20,21
tine)
Pyrazinamide Nicotinamidase/Pyrazinamidase prcA 19
embA 19,22
Ethambutol Arabinosyitransferase embB
embhC
Ribosomal S12 protein rpsL 13,19
165 IRNA rrs 13,19
rRNAmethyltransferase gidf 19
Streptomycia (G527 in 5§30 loop)
Aminoplyceside phosphotransferase strd 22
DMNA gyrase subunit A A 13,19
Quinolones DNA gyrase subunit B grvB 19
Amikacin 165 rRNA rrs 19,23-26
s 19, 23-26
Kanamycin 165 IRNA eis 23,24, 26,27
Capreomycin 2"-0-methyltransferase wid 19,23,25
165 rRNA res 23,25,26
Para-aminosalicylic acid Thymidylate synthase thyd 19
50109 Mycobacterial membrane protein, Jarge 3 . mmpL3 28
- Deazflavin-dependent nitroreducta- didn 29-31

se/F420reductase, protein synthesis, Myco-
lic acid biosynthesis

Delamanid
{OPC-67683)

PA-524 Glucose-6-phosphate dehydrogenase Jed! 32,33
ddr

Ethicnamide Flaviomonooxygenase etad/ethd 19, 34
Transcriptional repressor ethi

Encyl-Acyl Carrier Protein reductase inkA
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Table (1} Cont...
Oxazolidinones
(Linezolid, Sutezolid {PNU- . 238 rRNA cfr 35
160480), AZD584T)
Bedaguiline Subunit C of Adenosine triphosphate atpE 36,37
(TMCEOT) synthasc
Carbapenems p-lactamase, Transpeptidase baC 37-3%
Benzothiazinones Decaprenylphosphoryl-p-D-ribose-2'- dprE; 40, 41
epimerase 1
D-alanine racemase airA
Cycloserine D-alanine-D-alanine ligase ddi 34,37,42
Clofazimine Interleukin-2 luciferase gacA/B 43, 44

previous studies revealed the lowest percentage of uses of
clofazimine (Table 2} which correlated to its lowest percent-
age of TB bacilli resistance (Table 6) while some dmgs did
not. The information of MDR/XDR-TB mentioned zbove
including increased total anti-TB drug-resistant TB is very
important for investigators and drug companies to mvest in
novel anti-TB compounds development for solving the
global crisis of current anti- MDR-TB and anti-extensively
drug-resistant TB (XDR-TB, TB that develops resistance to
at least isoniazid and rifampicin as well as to any quinolone
drug and at least one of the second-line anti-TB injectable

Table 2.  Drugs used in treating MDR-TB [45].
Drug 2% of Usage

Cycloserine 156
Para-aminosalicylic acid 60.7
Thioamides 6G.6
Ofloxacin 525
Capreomycin 422
Kanamycin 42.1
Pyrazinamide 39.9
Augmentin - 323
Ethambutol 319
Ciprofloxacin 26.3
Streptomycin 158
Thicacetazone 15.7
Clarithromycin 1i.6
Levofloxacin 3.0
Sparfloxacin 13

?ofazimine 12

drug: kanamycin, capreomycin, or amikacin, WHO Global
Task Force on XDR-TB, October, 2006) drug resistance and
their adverse side effects (Tables 3, 6). Presently, moxiflox-
acin seems to be the most promising drug in the treatment of
XDR-TB (Table 5).

Drugs Used in MDR-TB Treatment Regimens

A previous study in Russian Federation (Tomsk Oblast},
Peru (Lima), the Philippines (Manila), Latvia and Estonia
showed the frequency of anti-TB drugs used in the freatment
of MDR-TB as shown in Table 2 [45].

Adverse Side-effects of the Second-line Drugs in Treating
of MDR-TB

A previous study by collecting data from directly ob-
served treatment, short course (DOTS)-Plus sites in the Rus-
stan Federation (Tomsk Oblast}, the Philippines (Manila),
Peru (Lima), Latvia and Estonia revealed frequency of ad-
verse events from suspected second-line agents as shown in
Table 3 [46].

NEW-DRUG DEVELOPMENT PIPELINE
1. Fluoroquinoiones

Moxifloxacin and gatifloxacin are both 8-methoxyquino
lones which are the two most advanced anti-TB compounds
used in phase ITI clinical trials [37]. Moxifloxacin deroon-
strates MIC of 0.5 pg/mL {31] while the MIC of gatifloxacin
is 1 pg/mL [47}. They are currently preferred-cornerstone
anti-TB agents for MDR-TB chemotherapy without cross-
resistance with existing anti-TB compounds [48). They had
been used in replacement of isoniazid by moxifloxacin or
gatifloxacin in the first-line regimens which showed the
greatest bencfit in murine model [48]. The OFLOTUB con-
sortium reported the replacement of ethambutol by moxi-
floxacin 400 mg or gatifloxacin 400 mg in the first-line regi-
mens with more rapid clearance of TB bacilli in sputum
compared to ofloxacin [48]. The earliest sputum culturc con-
version was demonstrated at week 2 of the treatment course
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Table3. Adverse side-cflects of the second-line drugs [46].
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Adverse side-effect

Drug

% of Event

Nausgea/Vomiting

Fluoroguinolong,
Para-aminosalicylic acid,

Thipamnides

328

Diarthea

Para-aminosalicylic acid,

Thicamides

21.1

Arthralgia

Aminoglycosides,
Cyclosenneg,
Fluoroquinolone,

Thicamides

16.4

Dizziness/Vertigo

Aminoglycosides,
Capreomycin,
Cycloserine,

Fluoroguinolone

14.3

Hearing disturbance

Aminoglycosides,
Capreomyrcin,

Thicamides

Headache

Cyclosering,

Fluoroquinolone

Sleep disturbances

Cyclosenne,

Fhuorogquinclone

11.6

Electrolyte disturbance

Capreomyrin,

Thioamides

Abdominal pain

Para-aminosalicylic acid,

Thioamides

10.8

Anorexia

Para-aminosalicylic acid,

Thinamides

92

Gastritis

Para-aminosalicylic acid,

Thicamides

86

Peripheral neuropathy

Aminoglycosides,
Cycloserine,

Thicamides

78

Depression

Cycloserine

62

Tinnitus

Aminoglycosides,
Capreomycin,

Cycloserine

5.1

Allergic reaction

Fluoroquinolone

5.1

Rash

Fluoroquinolone,

Para-aminosalicylic acid

4.6

Visual disturbances

Cyclosering,

Thioamides

4.4
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Table (3 Cont..
Seizures Cyeloserine 4.0
llypathyroidism Tara-aminosalicylic acid, 35
Thioamides
Psychosis Cycloserine i4
Ilepatitis Thivarnides 22
Renal failure/Nephrotoxicity Aminoglycosides, 1.2
Capreomycin

found by the investigators from the Johns Hopkins Univer-
sity [48]. Quinclone resistance has been fairly shown in
some parts of the werld such as India [37]. Moxifloxacin and
gatifloxacin were both approved by the United States FDA
in 1999 [49). Chemical structures of moxifloxacin and gati-
floxacin are shown below (Figs. 1, 2).

F

Fig. (1). Moxifloxacin
Source: Slepikas et al. Medicina (Kaunas) 2011

Fig. (2). Gatifloxacin
Source: Slepikas et al. Medicina (Kaunas) 2011

Patents Claimed -

Current patents are claiming a crystaltine form (monohy-
drate) of moxifloxacin which is due to run until 2016 [50-
53). Such patents have been granted in many counfries in-
cluding South Africa, Ukraine, China and Russia for combat-
ing the MDR-TB [50]. The US Patent Application Number
10/573329 [54] by Cosme also recently described a crystal-
line form of gatifloxacin for treating MDR-TB.

2. Carbapenems

There was a study of intravenous- imipenem combination
therapy in patients with MDR-TB but its personal contribu-
tion was not measured [48]. Meropenem may be more effec-
tive than imipenem [48]. 1t functions as almost like a p-

lactamase inhibitor rather than a substrate [55, 56]. A previ-
ous study revealed that meropenem was more consistently
active than imipenem in the presence of clavulanate (M1Cq, :
10 pug/mL for imipenem vs 0.94 pg/mL for meropenem)
[48]. Evaluation of the efficacy of meropenem/clavulante in
the treatment of MDR/XDR-TB patients is undcrway [48].
There are major disadvantages for clinical use of meropenem
in the field because of the need for multiple daily intrave-
nous doses for maximal efficacy [52]. Sulopenem (Clinical-
Trials.gov identifier: NCT00797108), faropenem, and crtap-
enem have not described their activity against Mycobacte-
rium tuberculosis [48]. Chemical structure of meropenem is
shown below (Fig. 3).

Fig. (3). Chemical structure of Carbapenem Backbone
Source: Dugal ef al, International Journal of Cumrent Pharmaceuli-
cal Research 2011

Patents claimed

The US Patent Application Number 20110190253 [57]
by Blanchard recently presented an administering of mero-
penem or imipenem in conjunction with clavulanic acid to
satisfy the need for treating MDR/XDR-TB.

3. PA-B24

PA-824 is a nitroimidazole that has sterilizing activity
against drug-susceptible and drug-resistant TB and both ac-
tive and dormant organisms induced in hypoxic condition
in vitro. The MIC of PA-824 is 0.015-0.25 mg/mL [3i].
Studies in healthy subjects with single oral doses of PA-824
showed the maximal blood level approximately 6- to 200-
fold higher than MICs found in vitro for both drug-
susceptible and drug-resistant strains of Mycobacterium tu-
berculosis and reached averaged maximal plasma levels ap-
proximately 3 pg/ml (1,500-mg dose) in 4 to 5 hours inde-
pendently of the dose [58]. PA-824 was well tolerated fol-
lowing oral doses once daily for up to 7 days [58]. The
maximum cffectiveness of the drug was found at the lowest
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dose tested, 200 mg. Its activity was dose-dependent [59].
Studies published in 20§1 revealed that PA.824 could be
active against TB bacilli in humans in doses as low as 50 or
100 mg/day and postulated that humans require relatively
lower doses of the drug than mice because of longer half-life
of PA-824 in humans [60]. Currently, PA-824 has already
entered phase 11 clinical trials as part of the first regimen
(PA-824/Moxifloxacin/Pyrazinamide) that contains multiple
new anti-TB drugs [61-63]. Diacon et al. recently concluded
that PA-824 bactericidal activity in smear-positive TB pa-
tients was over the dose range of 200 to 1,200 mg/day and
sustained at least 14 days [64]. Treatment of TB in guinea
pigs with dry powder PA-824 aerosols was recently studied
and revealed significant reduction in the bacterial burden of
lungs and spleen with smaller doses compared with oral
doses {cight times the inhaled low dose and four times the
inhaled high dose) [65]. The chemical structure of PA-824 is
shown below (Fig. 4).
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Fig. (4). Chernical structure of PA-824
Source: Bijev A er al. Journal of the University of Chemical Tech-
nology and Metallurgy 2011

Patents claimed

The US Patent Application Number 2010/043908[66] by
Thompson et al. recently described new nitroimidaooxazine
and nitroimidazooxazole analogs for treating both drug-
susceptible and drug-resistant TB.

4, QPC-67683 (Delamanid)

OPC-67683 is a nitroimidazo-oxazole with cross-
resistance to PA-824 [67] without cross-resistance to current
anti-TB drugs [28, 29]. It is more potent than PA-824
in vitro (4-16 times) [34] and in vive with an MIC range of
0.006-0.024 pg/mL and minimal bactericidal dose which
resulted in a 2 loge reduction in CFU of 2.5 mg/kg in mice,
compared with 50 mg/kg for PA-824 in a similar model [30].
Combination of QPC-67683 at the minimal bactericidal dose
with rifampicin and pyrazinamide resulted in a more rapid
achievement of negative cultures in lungs of mice [30]. A
phase IIb was underway in MDR-TB patients randomized
recejving the regimen with either OPC-67683 at 100 or 200
mg twice daily or placebe (ClinicalTrials.gov identifier;
NCTO00685360) [23]. OPC-67683 shows rather synergistic
effect with the first-line anti-TB drugs and could prove ef-
fective in the treatment of MDR/XDR-TB [49]. Des-
nitroimidazole, one of the major three primary metabolites
which were converted by a deazaflavin- dependent ni-
troreductase of the bacilli in the mouse model experiments,
is firstly found in OPC-67683 with intracellularly anaerobic-
killing effects on TB bacilli [68]. Formation of des-
nitroimidazole metabolite generates reactive nifrogen spe-
cies, including nitric oxide (NO) [68]. The chemical struc-
ture of delamanid is shown in Fig. 5.
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Fig. (5). Chemical structure of OPC-67683
Source: Bijev A ef al. Journa! of the University of Chemical Tech-
nology and Metallurgy 2011

PA-824-related Patents Claimed

The US Patent Application Number 20120028973 [69]
by Denny et al. recently presented a new compeund of nitro-
imidazooxazines with high potency against both hypoxic
(latent or persistent) and acrobic (replicating) cultures of
Mycobacterium tuberculosis and high efficacy in mouse
model for use as anti-TB drug and treatment of other bacte-
rial infections,

Oxazolidinones-related Patents Claimed

The US Patent Applicatien Number 20110190199A1
[70] by Brickner er al. recently described a compound, (S)---
N-[[3[[3-fluoro-4-(4-thiomorpholinyl]-2-oxo-5-oxazolidiny!]
me-thyl]acetamide for treating MDR- and latent TB. Its
chemical structure is shown in Fig. 6.

Fig. (6). Compound described by Brickner ef a.
Source :US Patent Application Number 20110190199A1(2011)

5. Linezolid (LZD)

Linezolid is the first oxazolidinone antimicrobial agent
[71]. It was first disclosed in the US patent 5,688,792. High
maximal serum concentration, MICy for Mycobacterium
tuberculosis (0.5-1 mg/l} and exccllent penetration into
bronchial mucosa and AUC;/MIC of LZD along with the
slow growth of Mycobacterium tuberculosis contribute to
effective daily-half dosage [72]. A previous study on 8 pa-
tients with intractable MDR-TB treated with 600 mg once
daily and 600 mg twice daily for 2 and 7 weeks then 600 mg
once daily of LZD for 3-18 months showed the time to spu-
tum smear and culture conversions of 30-179 days and 25-
147 days, respectively {72]. An ongoing phase 1la, random-
ized, 2-arm, open-labe), clinical trial on the treatment of
XDR-TBwith LZD has been conducted by the National Ma-
san Tuberculosis Hospital in Masan, South Korea for inves-
tigating its effectivencss on XDR-TB treatment. The partici-
pants are randomly divided into groups. Group | participants
are observed for 2 months before starting LZD, while group
2 patients start administering LZD on the first day of atten-
dance. Both groups begin with a 600 mg daily dosc of LZD
in combination with their existing treatment regimen. After 4
months of treatment or stopping of coughing they are ran-
domly assigned either to take the decreased dose of 300 mg
or to continue taking 600 mg of LZD. The primary objective
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of this study is to assess the LZD therapy efficacy, measured
by sputum culture conversion and the second ones arc teler-
ability and toxicity of prolonged LZD therapy, a potential
early LZD toxicity indicator, effects of LZD on mitochon-
drial function, LZD pharmacokinetic and pharmacodynamics
profiles, relapse rate after 12 months of LZD therapy discon-
tinuation, LZD resistance rate, the correlation of whole-
blood killing assays with response to LZD therapy, changes
in bacterial lipid and immunologic markers, the rate of radio-
logical changes by chest computed tomography, and the
changes in pulmonary architecture and cellular activity dur-
ing LZD therapy by using F-fluoro-2-decxy-D-glucose-
positron emission tomography-computed tomography (FDG-
PET-CT)of 20 participants [73).This study has been started
since July 2008 and will be completed in January 2015.
However, the efficacy of linezolid in treating MDR/XDR-TB
must be evaluated when compared to moxifloxacin [74]. The
chemical structure of linezolid is shown in Fig. 7.

2 0
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Fig. (7). Chemical structure of Linezolid
Source: Bijev A ef al. Jounal of the University of Chemical Tech-
nology and Metallurgy 2011

Patents Claimed

The US patent 7718799 [75] by Raoe! al. recently pre-
sented the invention related to a novel crystalline form of
linezolid, to process its preparation and sell it to a pharma-
ceutical containing it. The present invention is useful as it is
effective against Mycobacterium tuberculosis.

6. TMC207 (Bedaquiline)

TMC207 (formerly R207910) is a diarylquinoline com-
pound with a new mechanism of action by inhibiting myco-
bacterial adenosine triphosphate synthase [76, 77]. The MIC
of TMC207 ranges from 0.002 to 0.06pug/mL [31]. A recent
study by Tasneen ef gl. in a murine model of both drug-
susceptible and MDR- or XDR-TB demonstrated that
TMC207 plus PZA plus either rifapentine or moxifloxacin
was the most effective 3-drug combination regimen com-
pared to other 3-combination regimens (TMC207, PA-824,
moxifloxacin, rifapentine, and pyrazinamide) [78]. Diacon et
al. conducted a previous randomized study among smear-
positive pulmonary-TB patients in South Africa with 400
mg, once daily of TMC207 (100-mg tablet) for the 2 weeks
and followed by 200 mg, tid for 6 weeks compared to the
placebo group as an addition to the MDR-TB treatment regi-
mens. The results showed 11.8 times more rapid sputum
culture conversion during 8 weeks (48% for TMC207 vs 9%
for placebo group) [79]. The chemical structure of bedaqui-
line is shown in Fig. 8.
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Fig. (8). Chemical siructure of Bedaquiline (TM207)
Source: Bijev A et al. Journal of the University of Chemical Tech-
nology and Metallurgy 2011

Patents Claimed

The US Patent Application Number 20110065723 [80]
by Grossman ef al. recently presented a chemical composi-
tion related to a diarylquinoline antibiotic and a rifamycin
antibictic (Timcodar or TIM), n- benzyl-3-(4-chlorophenyl)-
2-Tmethyl-[2-0x0-2(3,4,5-trimoxyphenyl)acetyl]amino]-n-[3-
{4-pyridyl)-1-[2-4- pyridylethyl]propyl]prepranclamide,
useful for the treatment of Mycobacterium tuberculosis in-
fection. kts chemical structure is shown in Fig. 9.

Fig. (%), Compound described by Grossman ef al.
Source: US Patent Application Number 20110065723 (2011)

7.8Q109

SQ109 shows extensive tissue distribution and concentra-
tion in animal model that may explain how drug maintains
activity in mice while the serum concentrations do not ex-
ceed the MIC which is 0.1-0.63 pg/mL [31, 81, 82}, SQ109
was safe and well-tolerated in single doses up to 300 mg
[83]. The chemical structure of SQ109 is shown in Fig. 10,

Me Ne

H
)\/\)\/“‘\/““

Me

Fig. (10). Chemical structure of Q109
Source: Bijev A ef al Journal of the University of Chemical Tech-
nology and Metallurgy 2011
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Patents Claimed

The US Patent Application Number 12/255976 [84] by
Protopopova et al. recently described novel substituted eth-
ylene diamine compound for further comprising current anti-
TB drugs. Its chemical structure is shown in Fig. 11.

H
O/ N\/\N\\Q‘“ 7
H

Fig. {11). Compound described by Protopopova ef al.
Source: US Patent Application Number 12/255976 (2009)

8. LL-3858 (Sudoterb or LU-3858)

LL-3858 was discovered in 2004 with reporting of poten-
tial killing of both drug-susceptible and drug- resistant Ay-
cobacterium tuberculosis bacilli in vitro and in vive (mur-
in¢/mice model) via unknown target and mechanism of ac-
tion [48, 49]. The MICy is 0.25 pp/mL [31]. LL-3858 has
been claimed to completely sterilize both drug-susceptible
and drug- resistant TB bacilli in infected mice within 2
months in combination with isoniazid, rifampicin and pyraz-
inamide [49]. Currently, there is no more information of LL-
3858 progression [85]. The chemical structure of sudoterb is
shown in Fig. 12.
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Fig. (12). Chemical structure of Sudoterb (LL-3858)
Source: Bijev A ef af. Joumal of the University of Chemical Tech-
nology and Metallurgy 2011

9. PNU-100480 (Sutezolid)

It is classified in oxazolidinones with cwrent investiga-
tions in phase 1 (ClinicalTrials.gov identifier: NCT00990990)
and more potent activity against Mycobacterium tuberculosis
than LZD which is the only currently marketed oxazolidi-
none [48,86-88]. The MICspof PNU-100480 ranges from
0.0625 to 0.5 pg/mL [31]. Its anti-TB activity was first re-
ported in 1996 [86]. Single doses of 600 and 1,000 mg were
well-tolerated and bactericidal drug concentrations were
maintained in whole blood samples for 12 and 24 hours post-
dose, respectively [89]. A recent study on bactericidal activi-
ties of XDR-TB treatment regimens containing sutezolid
{PNU-100480), bedaquiline (TMC207), PA-824, SQ109,
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and pyrazinamide using rapid evaluation in whole blood cul-
ture revealed that combinations of sutezolid, SQ10%, and
bedaquiline were fully additive, whereas those including PA-
824 were less than additive and antagonistic in some in-
stances [90]. Wallis er al. recently concluded that measure-
ment of sutezolid bactericidal activity against Mycobacte-
rium tuberculosis in ex viva whole blood culture was a supe-
rior biomarker for efficient dose selection in early develop-
ment of this drug {91]. The chemical structure of sutezolid is
shown in Fig. 13.

8

RPN

Fig. (13). Chemical structure of PNU100480
Source: Bijev A ef al. Joumnal of the University of Chemical Tech-
nology and Metallurgy 2011

10, AZD5847

It is another oxazolidinone which has entered Phase |
study with an ascending dose study of the pharmacokinetics
(PK), safety and tolerability of the compound (ClinicalTri-
als.gov identifier: NCT01037725) [48]. Its MICqq is 1 pg/mL
[31]. Pubtic information of the pre-clinical evaluation of this
compound is not available [47]. The chemical structure of
AZIDS847 is currently not yet available.

Patents Claimed

The US Patent Application Number 20120035219 [92]
by Das et al. recently described a compound with ring nitro-
gen (AZD2563) in the additional hetero ring (e.g. oxazole,
etc.),  (5R)-3-[4-[1-[28)-2,3-  dihydroxypropanayl]-3,6-
dihydro-2H-pyridin-4-yl]-3-,5-difluoro-phenyl]-5-(isoxazol-
3-yloxymethyl)oxazolidin-2- ene, for the treatment of Myco-
bacterium tuberculosis. The chemical structure of AZD23563
is shown in Fig. 14,
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Fig. (14). Compound described by Das e/ al.
Source: US Patent Application Number 20120035219(2012)

11. Benzothiazinones (BTZ043)

A new class of anti-TB agent is called benzothiazinongs.
It inhibits the major target enzyme, decaprenylphosphoryl-f-
D-ribose- 2'-¢pimerase and contributes to cessation of deca-
prenylphosphoryl arabinose formation which is required for
the synthesis of the cell-wall arabinans of Mycobacterium
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tuberculosis [93]. MIC; of BTZ043 against 3 strains of
Mycobacterium tuberculosis, H37Rv, NTB9 and NTBI1 are
1, 250 and 10,000 ng/mL, respectively [93]. This most ad-
vanced compound is a candidate for inclusion in combina-
tion therapies for both MDR/XDR-TB and drug-susceptible
TB [93]. The chemical structure of benzothiazinones is
shown in Fig. 15,

FaC

Fig. (15). Chemical structure of Benzothiazinones

Source : Shakya er ol Chemotherapeutic strategies and targets
against resistant TB. In : Pere-Joan Cardona, Ed. Understand-
ing tuberculosis-new approaches to fight against drug resistance
2012

Patents claimed

The US Patent 7863268 [94] by Makarov ef @l. recently
presented the generation of a novel compound of benzothi-
azin derivatives to combat drug-resistant-TB bacilli includ-
ing leprosy. Its chemical structure is shown in Fig, 16,

Fig. (16). Chemical structure of Benzothiazin derivatives described
by Makarov ef al,
Source: US Patent 7863268 (2011)

12. Isoflavonoids

Isoflavonoids are a class of flavonoid phenolic com-
pounds (Phytoestrogens). Phytoestrogens are a biologically
active compounds in this class, produced by pea family
plants. They are converted by intestinal bacteria to com-
pounds with estrogenic activity. One example of this herbs is
licorice root (Glyeyrrhiza glabra). Glyeyrrhiza glabra in
Liguorice has impressive documented uses with identifica-
tion of potentially healing substances. It is useful for many
inflammatory conditions such as TB, emphysema, asthma,
bursitis, arthritis, tendinitis, viral infection, gingivitis, pros-
tate enlargement, etc [95]. A previous study demonstrated
potential anti-TB bacilli activity of Glycyrrhiza glabra frac-
tion with ethyl acetate by MIC range of100-250 pg/mL [96].
The chemical structure of isoflavonoids is shown in Fig. 17.
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Fig. (17). Chemical structure of Isoflavonoids
Source:  http://www.friedli.com/herbs/phytochem/flavonoids. html,
accessed on May 7, 2012

Patents Claimed

The US Patent 5399558 [97] by Baker ef ol summarized
that new erythrabyssin II isoflavonoid derivatives can con-
trol MDR-TB and gram-positive organisms ir vitro and
in vivo.

13. Rhein

Rhein is & glycoside in Rheum species, senna leaves, and
in several other species of Cassia [59]. Presently, it is a com-
pound of interest because of its antioxidant, antiangiogenic,
antitumor, antiviral, and antifungal effects [98-101]. It has
been found that diacerein which is derived from rhecin has
anti~- inflammatory effects and might be used for the treat-
ment of chronic inflammatory diseases or conditions includ-
ing prevention of tissue or organ transplant rejection {102].
The chemical structure of rhein is shown in Fig. 18.

OH ¢ OH

HO
0] 0

Fig. (18). Chemical structure of Rhein
Source:  http://www.chemblink.com/products/478-43-3.him,  ac-
cessed on May 7, 2012

Patents Claimed

The US Patent 3652265 [103] by Vittori ef al. contem-
plated the use of rhein in the treatment of MDR- TB. 1t was
found to be the most effective agent of the anthraguinonc
derivatives for mycobacterial treatment. During the chemical
production, their intermediate products formed for example,
diacetylrhein, aloe-emodin triacetate, and aloe-emodin all of
which in in vitro tests demonstrated antimycobacterial activ-
ity while aloe-emodin had MIC ratic of only 1: 100,000.
Rhein was found to be the most cffective of the anthraqui-
none derivatives against mycobacterial organisms. The US
Patent 4861599 [104] by Springolo ef ol. recently presented
the preparation of rhein derivatives pharmaccutical formula-
tions, especially of diacetyl rhein for permission of a pro-
grammed and gradual release of the agent throughout the 24
hour period from the administration of the therapeutic dose.
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14. Other Pre-clinical Study Compounds

CPZEN45, a nucleoside antibiotic produced by Strepio-
myces species, was first described in 2003. CPZEN45 (Fig.
19) has shown activity against XDR-TB in a mouse model
[31] with MICs of 2.26 pM for MDR-TB and 9.07 uM for
XDR-TB bacilli [31, 105]. The US Patent Application Num-
ber 20110237530 by Takahashi ¢f af. recently introduced a
caprazamycin derivative or CPZEN45 for initiation of a new
anti-MDR/XDR-TB compound [106]. A fluoroquinclone
derivative, DC159%a (Fig. 20) demonstrated the highest activ-
ity against quinolone-resistant MDR-TB with MICqq of 0.06-
0.5 mg/L in vitro [31, 107). DC15%a revealed 2-3 times more
longer mean survival days than levofloxacin, mexifloxacin,
rifampicin, and isoniazid and lacked interaction with cyto-
chrome P450 3A4 [31]. SQ609 (Fig. 21} is the most potent
candidate among a new series of potential cell-wall inhibit.
ing dipiperidines (5Q609, SQ614, SQ615) [31, 108]. It dem-
onstrated MIC of 4pg/mL [31] while SQ614 and SQ615
showed MICs of 7.8 uM in vifre [109]. Surprisingly, a recent
study reported that the MIC of 8Q614 was 4 pg/mL [108].
S(Q641 is a natural product with acting as a translacase 1
enzyme inhibitor and faster mycobactericidal rate than any
existing anti-TB drugs [31]. SQ641 (Fig. 22) showed MIC
ranges of 0.67-1.35 uM for drug-susceptible and 0.081-2.71
uM for drug-resistant TB bacilli {105]. Venkata et al.
claimed in the US Patent Application Number 12/331929
[£10] new capuramycin analogs for treating TB. The inven-
tion particularly related to methods and compositions com-
prising capuramycin and capuramycin analogs in combina-
tion with another anti-TB compound. Q201 is an imida-
zopyridine without much available detail of this compound
[31]. SQ73 is another new diamine derivative with MIC
range of 6.25-12.5 pM [105]. BDM31343 and DNBI are
other new chemical entities being under development [36]. A
Sesqeterpene, Heteronemin which is isolated from a red sea
sponge, disclosed activity against Mycobacterium tuberculo-
sis H37Rv with MIC of 6.25 pg/mL [111]. Nephalsterol C
and Litosterol, (Fig. 23) compounds of C19 hydroxy steroids
which are isolated from a red sea Nephthea sp, had 96% and
90% of inhibitory activity against Mycebacterium tuberculo-
sis H37Rw, respectively [111]. A compound isolated from
the Sacoglossan mollusk Elysia rufescens, Kahalalides A
(Fig. 24) also had inhibitory activity against Mycobacterium
tuberculosis H37Rv [111]. Tryptanthrin (PA- 505, Fig. 25), a
potent structurally novel indol-quinazolinone alkaloid, firstly
discovered by Chinese scientists was active against MDR-
TB bacilli with MIC range of 0.5-1.0 pg/mL {111, 112]. But
to date, in vivo and in vitro data of its toxicity are needed to
identify the efficacy in animal models before application in
MDR-TB treatment [111, 112]. From its chemical and struc-
tural considerations, it will be a DNA intercalator which con-
tributcs to its toxicological effects [112]. ATP Synthase In-
hibitor FAS20013 (FASgene), Translocasc I Inhibitor, InhA
Inhibitors, Isocitrate Lyase Inhibitors, and Pleuromutilins
(Figs. 26, 27) are being evalvated before going into pre-
clinical studies [t 11].

Cheepsattayakorn and Cheepsattayakorn
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Fig. (19). Chemical structure of CPZEN45

Source: Shakya ef @/, Chemotherapeutic strategies and targets
against resistant TB. In : Pere-Joan Cardena, Ed. Understanding
tuberculosis-new approaches to fight against drug resistance 2012
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Fig. (26). Chemical structure of DC15%a

Source: Shakya ef af. Chemotherapeutic strategies and targets
against resistant TB. In : Pere-Jean Cardona, Ed. Understanding
tuberculosis-new approaches to fight against drug resistance 2012

HO-CN\CN\@

Fig. (21). Chemical structure of SQ609

Source: Shakya et a/. Chemotherapeutic stratcgics and largets
against resistant TB. In : Pere-Joan Cardona, Ed. Understanding
tuberculosis-new approaches to fight against drug resislance 2012

Fig. (22). Chemical structure of 5Q641

Source: Shakya ef al. Chemotherapeutic sirategies and targets
against resistant TB. In : Pere-Joan Cardona, Ed. Understanding
tuberculosis-new approaches to fight against drug resistance 2012
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Fig. (23). Litosterol;R1=H ,R2=0H;Nephalsterol; R1=0Ac,R2=0H
Source: Bijev A ef a/. Journal of the University of Chemical Tech-
nology and Metallurgy 2011

Fig. (24). Kahalalides A
Source: Bijev et al. Joumnal of the University of Chemical Technol-
ogy and Metallurgy 2011
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Fig. (25). Tryptanthrin {PA-505)

Source: Bijev ef al. Journal of the University of Chemical Technol-
ogy and Metallurgy 2011

Fig. (26). Pleuromutilins described by Procter DI
Source: Angew Chem Int Ed. 2009
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Fig. (27). Pleuromutilin analogs described by Procter DJ
Source: Angew Chem Int Ed. 2009, 48, 9315
Table4. Anti-TB compound and MIC,

Anti-TB compound MIC Reference
Moxifloxacin 0.5 pg/mL (31]
Gatifloxacin I pg/mL [47]

0.%4 pg/mL (meropenem)

Carbapenems 10 pg/mL {imipenem} [48]
PA-824 0.015-0.25 mg/mL [31]
Detamanid (QPC-67683) 0.006-0.024 pp/mL [30]
Linezolid 0.5-1 mg/lL [72]
Bedaquiline (TM207) 0.002-0.06 pg/mL [31]
SG109 0.1-0.63 pp/mL 31
Sudoterb (LL-3858 or 0.25 pg/mL [313
LU-3858)

Sutezolid (PNU-100480y | 0.0625-0.5 pg/mL [31]
AZD5R4T 1 pg/mL [31]
Benzothiazinones 1,250-10,000 ng/mL 93]
(BTZ043)

Isoflavoneids 100-25¢ pg/mL [96]
Rhein ratio of 1: 100,000 [103)

(Aloe-emodin)

CPZEN435 2.26-9.07 oM [31]
DC159a 0.06-0.5 mg/L {31]
5Qé09 4 pg/mlL [3t]
5Q514 7.8 uM (109]
5Q613 7.8 uM [109]
5Qe41 (0.081-2.71 pM [105]
5Q73 6.25-12.5 uM [105]
Heteronemin 6.25 pg/mL [111]
Trytanthrin {PA-505} 0.5-1.0 pg/mlL [t




152  Recent Patents on Anti-Infective Drug Discovery, 2012, Vol 7, No, 2

Table5. The MDR/XDR-TB treatment pipeline-drugs in
clinical trials, July 2010 [31, 37,48 , 49, 105, 1066, 107,
108,109, 110,111,113, 114].

Cheepsattayakarn and Cheepsattayakorn

Table 6. In vitro second-line drug susceptibility testing results

Agent Class Status
Moxifloxacin Flueroguinolong Phase I1I
Gatifloxacin Fluoroquinelene Phase [1I
Meropenem Carbapengm Phase {II
PA-824 Nitroimidazo-oxazine Phase II
OPC-67683 Nitroimidazo-oxazole Phase
Linezolid Oxazolidinone Phase I
TMC207 Diarylquinolone Phases I/1I
5Q 108 Diamine Phases 1/11
L1-3858 Pyrrole Phases /11
PNU-100480 COxazolidinone Phase |
AZDSB47 Oxazolidinone Phase [
CPZEN45 Caprazamycin Pre-clinical
DC15% Quinolone Pre-clinical
5Q609 Dipipendine Pre-chinical
3Q614 Dipiperidine Pre-clinical
5Q615 Dipiperidine Pre-clinical
SQ641 Capuramycin Pre-climical
BTZ043 Benzothiazinone Pre-climical
201 Imidazopyridine Pre-clinical
Q73 Diamine Pre-clinical
Heteronemin Sesqeterpene Pre-clinical
(a red sea sponge)

Nephalsterol Marine natural products Pre-clinical
(C19 hydroxy steroids, a
red sea Nephthea sp)

Litosterol Marine natural products Pre-clinical
{C19 hydroxy steroids, a
red sea Nephthea sp}

Kahalalides Marine natural products Pre-clinical
(Sacoglossan mollusk
Elysia rufescens)

Recent Patents Claimed

The US Patent Application Number WQ2005US80056470
[116] by Zamecnik et al. recently provided anti-TB/MDR-
TB/XDR-TB compounds comprising an oligonucleotide
having a sequence complementary to a franslation initiation
region of an mRNA encoding a mycolyltransferase of Myco-
bacterium tuberculosis. The US Patent Application Number

|1115}.
Drug % of Resistance
Rifabutin 85
Streptomycin 63
Ethambutol 37
Pyrazinamide 23
Prothionamide 8
Amikacin 5
Para-aminosalicylic acid 5
Ciprofloxacin 4
Cyclosetine 1
Clofazimine 0

2008000808801 [117] by Fussenegger ef al. recently de-
scribed a pharmaceutical composition called formula |
which was selected from benzy! acetate, 2-pheny! butyrate,
in particular 2-phenylethyl butyrate, A-phenyl-2-butanone,
3-phenylpropyl propionate and another compound of for-
mula 2 selected from ethionamide, -thiourea or thiacetazone,
isoxyl,; &#923; /-&lsqb; /-arabinofuranosyl- &#923; and p-
(isoamyloxy)phenyl & rsqb which was recently described in
the US Patent Application Number WO2008EP0066124
[118]. The chemical structures of compound formula ' and 2
are shown in Figs. 28 and 29, respectivcly.

M\R,f Y

Fig. (28). Compound formula 1 described by Fussenegger ef a/.
Source: US Application Number 2008000808801 (2008}
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Fig. (29). Compound formula 2 described by Fussenegger ef al.
Source: US Patent Application Number WO2008EP0G66124
(2008)

CURRENT & FUTURE DEVELOPMENTS

As we mentioned above, only 48-81% of MDR-TB pa-
tients were cured [16-18]. The previous studies revealed
kanamycin and rifabutin resistances [1}5,Table 6] and
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percentage of adverse side-effects of numerous second-line
drugs [Table 3, reference 19] are still high and contribute to
the needs for new compounds, drugs, regimens, and tech-
nologics to combat MDR/XDR-TB, MDR/XDR-TB drugs
procured through the Green Light Committee/Global Drug
Facilities (GLC/GDF) cost between US$ 4,400 and US$
9,000 per patient for a standardized 18-24 month- treatment
regimen while prices may be higher for drugs purchased
outside of the GLC/GDF, this acts as a barrier to treatment
scale up [119]. There are few quality-assured producers of
the drugs that exist, such as PAS, capreomycin, clofazimine,
terizidone, moxifloxacin and prothionamide {119] of which
only one quality-assured source exists [120]. There is little
information on how the second-line drugs interact with
antiretroviral drugs which are used to treat HIV-
infected/AIDS patients because today TB co-infected with
HIV/AIDS is uncommon to be a priority for developers of
antiretrovirals for HIV/AIDS in developed countries [12L].
Only two drugs (levofloxacin and amikacin) have been de-
veloped as not widely available- pediatric formulations while
particularly neglected-childhood MDR-TB cases have been
assumed 10-15% of total TB cases each year [122]. The new
anti-TB agents- discovery pipeline has considerably grown
over the past 5 years with more than 30 discovery and pre-
clinical projects currently being pursued which are derived
from two sources, pursuit of specific molecular targets and
phenotypic screening [52]. Millions of anti-TB compounds
have literally been screened over the past 5 to 10 years. Rela-
tive lack of sophisticated medicinal chemistry capability to
modify the expensive and time-consuming step is one of the
current rate-limiting steps in phenotypic- screening approach
[48]. There are various pursuing specific targets within My-
cobacterium tuberculosis and its genetic sites (Table 1) such
as Mycobacterium tuberculosis—specific protease, kinase,
ete. The better understanding of the TB-cell death mecha-
nism is one of the advantages of the target-specific discovery
programs [48], Inhalational approaches [123, 124] with
nanoparticles such as nanosuspension, nancemulsion (po-
lymeric and nonpolymeric nanoparticles, polymeric micelles
and other self-assembled structures, dendrimers, complexa-
tion with cyclodextrin, liposomes and microencapsulation)
[£25-128] of anti-TB compounds have the possibility to de-
liver muck higher doses of drug to the lung tissues and re-
duce dosing frequency. The intracellular persistence of the
TB organism is the rationale for nanoparticles approaches
that has never been well-validated assumption [129] while
the exact histological localization of inereased delivery of
the inhalational approaches is stil not clear [48]. Cost of
new products always needs to be considered in the aspect of
all novel delivery systems as well as new anti-TB com-
pounds such as benzothiazinones introduced by Makarov et
al, [93], compounds introeduced by Zamecnik er gf [116] and
Fussenegger er al. [117, 126], isoflavonoid introduced by
Baker es al. [97], and rhein introduced by Vittori ef al. [103]
and Springolo e al. [104). Among the TB endemic countries
with limited resource, it can be a limiting factor for the fea-
sibility of using some novel delivery methods.
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ABBREVIATIONS

AIDS = Acquired Immunodcficiency Syn-
drome

AUC,, = Concentration-Time Curve-24 hours

AZD = AstraZeneca Development Pipeline

BID = twice a day

CFU = Colony-Forming Unit

CFX = Ciprofloxacin

CFZ = Clofazimine

DOTS = Directly Observed Treatment, Short
Course

DNA = Deoxyribonucleic Acid

E = Ethambutol

Eth = Ethionamide

FDA = Food and Drugs Administration

FDG-PET-CT = F-fluoro-2-deoxy-D-Glucose-Positron
Emissien Tomography-Computed
Tomography

GDF = Global Drug Facility

GLC = Green Light Committee

HIV = Human Immunedeficiency Virus

LL = Lupin Limited

LZD = Linezolid

MDR-TB = Multidrug-Resistant Tuberculosis

MICe/MIC = Minimal Inhibitory Concentration

NO = Nitric Oxide

NTP = National Tuberculosis Program

OFLOTUB = A Multicentre Randomized Control
Trial of Ofloxacin-containing Short-
course Regimen for the Treatment of
Pulmonary Tuberculosis

OPC ' = Nitro-dihydro-imidazooxazole

PA = Nitroimidazopyran

PAS = Para-aminosalicylic Acid

PK = Pharmacokinetics

PNU-100480 = PF (Pfizer} 02341272-U 100480 or
(8)-N-{{3-(3-fluoro-4-thiomerphilino-
phenyl)-2-oxooxazolidine-5-
yl)methylacetamide

qd = Once a day

rRNA = Ribosomal Ribonucleic Acid

50Q = Sequella

TB = Tuberculosis
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XDR-TB

= three times a day

= Tibotec Medicinal Compound
= Versus

= World Health Organization
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